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SUPPLEMENTAL FIGURE LEGENDS 
 
 
 

Supplemental Figure 1. Persistence of chromatin condensation with short term DL (600s, 1Hz) 

depends on the magnitude of applied strain (red line: unstrained CM control, DL: 600s, 1Hz, n = 

~20, *: p<0.05 vs. CM control, +: p<0.05 vs. 3%, α: p<0.05 vs. 0s, mean ± s.e.m.). 

 

Supplemental Figure 2. Chromatin condensation correlates with an increase in nuclear 
mechanics and a decrease in in situ nuclear deformation. (A) Treatment with MgCl

2
+CaCl

2
 

for 30 minutes increases chromatin condensation (top) and the number of visible edges in DAPI 
stained nuclei (bottom, bar = 3 μm). (B) Increased CCP with addition of MgCl

2
+CaCl

2
 (n = ~ 20 

cells, *: p<0.05 vs. 0 mM, +: p<0.05 vs. 10 mM, mean ± s.e.m.). (C) Nuclear aspect ratio (NAR) 
as a function of treatment and with applied scaffold stretch (n = ~ 45, *: p<0.05 vs. 0%, +: 
p<0.05 vs. 9%, ×: p<0.05 vs. 0 mM, mean ± s.e.m.). (D) Peri-nuclear stiffness measured by 
atomic force microscopy (AFM) increases with an increase in chromatin condensation in 
response to MgCl2+CaCl2 treatment (n = 10, *: p<0.05 vs. 0 mM, mean ± s.d.).    
 

Supplemental Figure 3. Normalized CCP (relative to unloaded MSCs) after treatment for 30 
minutes with complete or size fractionated DL-conditioned media (red line: unloaded CM control, 
n = ~20, *: p<0.05 vs. CM control, mean ± s.e.m.).   
 

Supplemental Figure 4. (A) CCP increases with the addition of exogenous ATP (n = ~20, *: 
p<0.05 vs. 0 mM, mean ± s.e.m.). (B) UTP addition increased CCP, whereas BzATP added at 
the same concentration had no effect on CCP (n = ~20, *: p<0.05 vs. CM control, mean ± 
s.e.m.).  
 

Supplemental Figure 5. Degradation of ATP in DL-conditioned media. ATP released from 
MSCs after 600s of DL gradually degraded, and did so at a faster rate when cells were present 
(37°C, n = ~ 3, *: p<0.05 vs. without cells, +: p<0.05 vs. 30m, α: p<0.05 vs. 1h, β: p<0.05 vs. 2h, 
normalized to ATP levels after 600s DL, mean ± s.d.).  
 

Supplemental Figure 6. (A-C) Representative images of YAP staining with treatment; (A): CM 
control, (B): 1mM ATP for 30 min, (C): 3% DL at 1Hz for 30 min (red: YAP, green: actin, blue: 
nucleus). (D) Nuclear to cytoplasmic YAP ratio with the addition of ATP or application of DL for 
30 min normalized to CM control (n = ~15, *: p<0.05 vs. CM control, mean ± s.d.). (E) Ratio of 
nuclear to cytoplasmic YAP with the application of DL for 30 min under control conditions or with 
apyrase (AP, 5U) or flufenamic acid (FFA: a hemichannel blocker) added to the media during 
loading.  Data normalized to unloaded CM control (red line)(n = ~15, *: p<0.05 vs. CM control, 
mean ± s.d.).      
 

Supplemental Figure 7. Alterations in CCP with short and long term dynamic loading and pre-
treatment with various inhibitors; (A): EGTA (a calcium chelator), (B): CALP2 (CALP, an 
antagonist of Calmodulin), (C): Cyclosporine A (CYSP, a Calcineurin inhibitor), (D): BAPTA-AM 
(BATAM, a calcium chelator), (E): Ruthenium red (RR, a TRPV4 inhibitor), (F): GSK205 (G205, 
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a TRPV4 antagonist), (G): GsMTx4 (GMT, a PIEZO ion channel inhibitor), (H): GdCl3  (GC, a 
stretch-activated channel inhibitor), (I): PPADS (a P2 receptor antagonist). (DL: dynamic loading, 
red line: CM control, green line: DL 600s, blue line: DL 3h, n = ~20 per condition, *: p<0.05 vs. 
CM control, mean ± s.e.m.). 
 

Supplemental Figure 8. Control studies showing no marked changes in (A) the baseline CCP   
(n= ~20) with the addition of pharmacological inhibitors for 600s or 3 hrs in unloaded conditions. 
(B) Nuclear deformation in MSCs subjected to static stretch with the addition of pharmacological 
inhibitors (n = ~50, CALP: CALP2, TG: thapsigargin, GC: GdCl3, GSK: GSK205, *: p<0.05 vs. 
0%, +: p<0.05 vs. 9% scaffold stretch, mean ± s.e.m.).  
 

Supplemental Figure 9. TGF-β (A), SMC1A (B) and CTCF (C) gene expression normalized to 
CM control (red line: CM control, n = 9, from 3 replicates, *: p<0.05 vs. CM control, +: p<0.05 vs. 
a, ‡: p<0.05 vs. b, α: p<0.05 vs. c, mean ± s.e.m.). 
 

Supplemental Figure 10. Change in aggrecan expression (AGG) as a function of the number 

of DL events and time after cessation of loading (n = ~ 3, *: p<0.05 vs. CM control (red line), +: 

p<0.05 vs. day 0, ‡: p<0.05 vs. day 3, mean ± s.d.). 
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Supplemental Figure 5 
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Supplemental Figure 6 

 

 

 

 

 

 

 

 

 

 



8 

 

Supplemental Figure 7 
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Supplemental Figure 8 
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Supplemental Figure 9 
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